首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of triacylglycerol and steryl ester synthases of the methylotrophic yeast Pichia pastoris
Authors:Vasyl A Ivashov  Guenther Zellnig  Karlheinz Grillitsch  Guenther Daum
Institution:1. Institute of Biochemistry, Graz University of Technology, Austria;2. Institute of Plant Sciences, Karl Franzens University Graz, Austria;3. Austrian Centre of Industrial Biotechnology, Austria
Abstract:In yeast like in many other eukaryotes, fatty acids are stored in the biologically inert form of triacylglycerols (TG) and steryl esters (SE) as energy reserve and/or as membrane building blocks. In the present study, we identified gene products catalyzing formation of TG and SE in the methylotrophic yeast Pichia pastoris. Based on sequence homologies to Saccharomyces cerevisiae, the two diacylglycerol acyltransferases Dga1p and Lro1p and one acyl CoA:sterol acyltransferase Are2p from P. pastoris were identified. Mutants bearing single and multiple deletions of the respective genes were analyzed for their growth phenotype, lipid composition and the ability to form lipid droplets. Our results indicate that the above mentioned gene products are most likely responsible for the entire TG and SE synthesis in P. pastoris. Lro1p which has low fatty acid substrate specificity in vivo is the major TG synthase in this yeast, whereas Dga1p contributes less to TG synthesis although with some preference to utilize polyunsaturated fatty acids as substrates. In contrast to S. cerevisiae, Are2p is the only SE synthase in P. pastoris. Also this enzyme exhibits some preference for certain fatty acids as judged from the fatty acid profile of SE compared to bulk lipids. Most interestingly, TG formation in P. pastoris is indispensable for lipid droplet biogenesis. The small amount of SE synthesized by Are2p in a dga1?lro1? double deletion mutant is insufficient to initiate the formation of the storage organelle. In summary, our data provide a first insight into the molecular machinery of non-polar lipid synthesis and storage in P. pastoris and demonstrate specific features of this machinery in comparison to other eukaryotic cells, especially S. cerevisiae.
Keywords:Acyltransferase  Triacylglycerol  Steryl ester  Lipid droplet  Pichia pastoris
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号