首页 | 本学科首页   官方微博 | 高级检索  
     


Microquantitation of insoluble tissue collagen (types I and III) by radiodilution assay
Authors:J Kelley  L Chrin  J N Evans
Affiliation:Department of Virology, The Weizmann Institute of Science, Rehovot 76100, Israel
Abstract:The individual collagen types of the extracellular matrix of small tissue samples have been difficult to quantitate accurately both due to their marked insolubility and their relatively low immunogenicity. Thus no microassay with the sensitivity of a radioimmunoassay is currently available for quantitation of insoluble collagen types I and III in extremely small tissue samples. A radiochemical assay has been developed which allows direct processing of small tissue samples containing as little as 1-3 micrograms of a given collagen alpha chain. Unprocessed lyophilized tissues were digested with cyanogen bromide (CNBr) in the presence of a tritiated probe containing a soluble mixture of 3H-alpha 1(I) and 3H-alpha 1(III) collagen previously extracted and purified from tissue minces incubated with [3H]leucine. The resulting mix of radiolabeled peptides was separated on sodium dodecyl sulfate-polyacrylamide gradient gels. Reduction of the specific radioactivity of free leucine in acid hydrolysates of each individual CNBr peptide can be used to quantitate the amount of collagen types I or III in the original sample. Similar radiodilution analysis using a 3H-alpha 2(I) probe indicated a normal 2:1 ratio of alpha chains of type I collagen in the tissues tested. This method is also applicable to cell culture, easily measuring the collagen associated with fibroblast cell layers or medium in individual microtiter wells. When applied to various tissues of known collagen-type composition, it provides reproducible results which compare well with values published in the literature.
Keywords:collagen (types I and III)  radioisotope dilution  cyanogen bromide  lung  liver  fibroblast
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号