首页 | 本学科首页   官方微博 | 高级检索  
     


Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification
Authors:Begoña Blasco  Juan J. Rios  Luis M. Cervilla  Eva Sánchez-Rodríguez  María M. Rubio-Wilhelmi  Miguel A. Rosales  Juan M. Ruiz  Luis Romero
Affiliation:(1) Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
Abstract:Iodine is vital to human health, and iodine biofortification programs help improve human intake through plant consumption. There is no research on whether iodine biofortification influences basic plant physiological processes. Because nitrogen (N) uptake, utilization, and accumulation are determining factors in crop yield, the aim of this work was to establish the effect of the application of different doses (20, 40, and 80 μM) and forms of iodine (iodate [IO3 ] vs. Iodide [I]) on N metabolism and photorespiration. For this study we analyzed shoot biomass and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), glutamate dehydrogenase (GDH), glycolate oxidase (GO), glutamate:glyoxylate aminotransferase (GGAT), serine:glyoxylate aminotransferase (SGAT), hydroxypyruvate reductase (HR) and catalase (CAT), nitrate (NO3 ), ammonium (NH4 +), organic and total N, amino acids, proteins, serine (ser), malate, and α-ketoglutaric acid in edible lettuce leaves. Application of I at doses of at least 40 μM reduced the foliar concentration of NO3 with no decrease in biomass production, which may improve the nutritional quality of lettuce plants. In contrast, the application of 80 μM of I is phytotoxic for lettuce plants, reducing the biomass, foliar concentration of organic N and NO3 , and NR and GDH activities. HR activity is significantly inhibited with all doses of I; the least inhibition was at 80 μM. This may involve a decrease in the incorporation of carbonated skeletons from photorespiration into the Calvin cycle, which may be partially associated with the biomass decrease. Finally, the application of IO3 increases biomass production, stimulates NO3 reduction and NH4 + incorporation (GS/GOGAT), and optimizes the photorespiratory process. Hence, this appears to be the most appropriate form of iodine from an agronomic standpoint.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号