首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The airway microbiota in cystic fibrosis: a complex fungal and bacterial community--implications for therapeutic management
Authors:Delhaes Laurence  Monchy Sébastien  Fréalle Emilie  Hubans Christine  Salleron Julia  Leroy Sylvie  Prevotat Anne  Wallet Frédérick  Wallaert Benoit  Dei-Cas Eduardo  Sime-Ngando Telesphore  Chabé Magali  Viscogliosi Eric
Institution:Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Biology and Diversity of Emerging Eukaryotic Pathogens (BDEEP), BP 245, Lille, France. Laurence.delhaes@pasteur-lille.fr
Abstract:

Background

Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways.

Methodology and Principal Findings

Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p?=?0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p?=?0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus.

Conclusions

In light of the recent concept of CF lung microbiota, we viewed the microbial community as a unique pathogenic entity. We thus interpreted our results to highlight the potential interactions between microorganisms and the role of fungi in the context of improving survival in CF.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号