首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress
Authors:Ahsan Nagib  Lee Dong-Gi  Alam Iftekhar  Kim Pil Joo  Lee Jeung Joo  Ahn Young-Ock  Kwak Sang-Soo  Lee In-Jung  Bahk Jeong Dong  Kang Kyu Young  Renaut Jenny  Komatsu Setsuko  Lee Byung-Hyun
Affiliation:Division of Applied Life Science (BK21 program and EB-NCRC), Gyeongsang National University, Jinju, Korea.
Abstract:While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.
Keywords:Arsenic  Glutathione  Rice
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号