首页 | 本学科首页   官方微博 | 高级检索  
   检索      


North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L
Authors:Olsen Jeanine L  Stam Wytze T  Coyer James A  Reusch Thorsten B H  Billingham Martin  Boström Christoffer  Calvert Elizabeth  Christie Hartvig  Granger Stephen  la Lumière Richard  Milchakova Nataliya  Oudot-Le Secq Marie-Pierre  Procaccini Gabriele  Sanjabi Bahram  Serrao Ester  Veldsink Jan  Widdicombe Stephen  Wyllie-Echeverria Sandy
Institution:Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands. j.l.olsen@biol.rug.nl
Abstract:As the most widespread seagrass in temperate waters of the Northern Hemisphere, Zostera marina provides a unique opportunity to investigate the extent to which the historical legacy of the last glacial maximum (LGM18 000-10 000 years bp) is detectable in modern population genetic structure. We used sequences from the nuclear rDNA-internal transcribed spacer (ITS) and chloroplast matK-intron, and nine microsatellite loci to survey 49 populations (> 2000 individuals) from throughout the species' range. Minimal sequence variation between Pacific and Atlantic populations combined with biogeographical groupings derived from the microsatellite data, suggest that the trans-Arctic connection is currently open. The east Pacific and west Atlantic are more connected than either is to the east Atlantic. Allelic richness was almost two-fold higher in the Pacific. Populations from putative Atlantic refugia now represent the southern edges of the distribution and are not genetically diverse. Unexpectedly, the highest allelic diversity was observed in the North Sea-Wadden Sea-southwest Baltic region. Except for the Mediterranean and Black Seas, significant isolation-by-distance was found from ~150 to 5000 km. A transition from weak to strong isolation-by-distance occurred at ~150 km among northern European populations suggesting this scale as the natural limit for dispersal within the metapopulation. Links between historical and contemporary processes are discussed in terms of the projected effects of climate change on coastal marine plants. The identification of a high genetic diversity hotspot in Northern Europe provides a basis for restoration decisions.
Keywords:Ice Age  ITS  microsatellites  phylogeography  seagrass                Zostera marina
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号