首页 | 本学科首页   官方微博 | 高级检索  
     


Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation
Authors:McLaughlin A P  De Vries G W
Affiliation:Department of Biological Sciences, Allergan, Incorporated, Irvine, California 92612, USA.
Abstract:Although bothvascular endothelial growth factor (VEGF) and fibroblast growth factor(FGF) receptors have been shown to be important in the regulation ofvascular endothelial cell growth, the roles of phospholipase C (PLC)gamma and Ca2+ in their downstream signaling cascades are stillnot clear. We have examined the effects of VEGF and FGF on PLCgamma phosphorylation and on changes in intracellular Ca2+ levelsin primary endothelial cells. VEGF stimulation leads to PLCgamma activation and increases in intracellular Ca2+, which arecorrelated with mitogen-activated protein (MAP) kinase (MAPK)activation and cell growth. Inhibition of Ca2+ increases bythe Ca2+ chelator1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM resulted in marked inhibition of MAPK activation, which wasshown to be linked to regulation of cell growth in these cells. Incontrast, FGF stimulation did not lead to PLCgamma activation or tochanges in intracellular Ca2+ levels, although MAPKphosphorylation and stimulation of cell proliferation were observed.Neither BAPTA-AM nor the PLC inhibitor U-73122 had an effect on theseFGF-stimulated responses. These data demonstrate a direct role forPLCgamma and Ca2+ in VEGF-regulated endothelial cell growth,whereas this signaling pathway is not linked to FGF-mediated effects inprimary endothelial cells. Thus endothelial cell-specific factorsregulate the ability of VEGF receptors and FGF receptors to couple tothis signaling pathway.

Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号