首页 | 本学科首页   官方微博 | 高级检索  
     


Free sterol metabolism and low density lipoprotein receptor expression as differentiation markers of cultured human keratinocytes
Authors:M L Williams  A M Mommaas-Kienhuis  S L Rutherford  S Grayson  B J Vermeer  P M Elias
Affiliation:Dermatology Service, Veterans Administration Medical Center, San Francisco, California.
Abstract:In contrast to most tissues, epidermis and its derivatives appear to lack low density lipoprotein (LDL) receptors and exhibit sterologenesis rates unaffected by circulating lipoprotein (LP) cholesterol content. Since LDL receptors have been demonstrated in both cultured squamous cell carcinoma cells and human foreskin keratinocytes, when maintained in low-calcium media, LDL receptor expression may be related to keratinocyte differentiation. We compared receptor binding and internalization of LDL-gold in normal keratinocytes at different stages of growth at physiological calcium concentrations (early, 3-5 days; preconfluent, 6-10 days; postconfluent, 12-17 days), and correlated receptor expression with sterologenesis in LP-replete vs.-depleted media. Whereas in early cultures about 60% of sterologenesis was LP dependent, this fraction declined in preconfluent and confluent cultures despite continued culture growth and little decline in total sterologenesis. Accordingly, LDL receptors were most evident in early cultures, declining in preconfluent cultures in parallel with the decrease in LP-dependent sterol synthesis. In contrast, sterologenesis in human foreskin fibroblasts was profoundly influenced by exogenous LP at all stages of confluence; total and LP-dependent sterologenesis declined in parallel with growth cessation. These studies represent the first demonstration that normal keratinocytes express functional LDL receptors at physiologic calcium concentrations. Moreover, they demonstrate that LDL receptor expression in keratinocytes, in contrast to fibroblasts, can only in part be attributed to growth requirements. Instead, loss of LDL receptor expression serves as a distinctive marker of keratinocyte differentiation and may reflect the specific functional requirements of the epidermis in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号