首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulating vestibular compensation using recurrent back-propagation
Authors:Thomas J Anastasio
Institution:(1) Department of Physiology and Biophysics and Beckman Institute, University of Illinois, 405 North Mathews Avenue, 61801 Urbana, IL, USA
Abstract:Vestibular compensation is simulated as learning in a dynamic neural network model of the horizontal vestibulo-ocular reflex (VOR). The bilateral, three-layered VOR model consists of nonlinear units representing horizontal canal afferents, vestibular nuclei (VN) neurons and eye muscle motoneurons. Dynamic processing takes place via commissural connections that link the VN bilaterally. The intact network is trained, using recurrent back-propagation, to produce the VOR with velocity storage integration. Compensation is simulated by removing vestibular afferent input from one side and retraining the network. The time course of simulated compensation matches that observed experimentally. The behavior of model VN neurons in the compensated network also matches real data, but only if connections at the motoneurons, as well as at the VN, are allowed to be plastic. The dynamic properties of real VN neurons in compensated and normal animals are found to differ when tested with sinusoidal but not with step stimuli. The model reproduces these conflicting data, and suggests that the disagreement may be due to VN neuron nonlinearity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号