首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of iron in adriamycin biochemistry
Authors:C Myers  L Gianni  J Zweier  J Muindi  B K Sinha  H Eliot
Abstract:Adriamycin forms a chelate with Fe(III) that exhibits complex redox chemistry. The drug ligand is able to directly reduce the bound Fe(III) with the concomitant production of a one-electron oxidized drug radical. This Fe(II) can reduce oxygen to hydrogen peroxide and cleave the peroxide to yield the hydroxyl radical. In addition, the drug X Fe complex can catalyze the transfer of electrons from reduced glutathione to molecular oxygen to yield superoxide, hydrogen peroxide, and hydroxyl radicals. The adriamycin X Fe complex binds to DNA to form a ternary drug X Fe X DNA complex, which is also able to catalyze the thiol-dependent reduction of oxygen and the formation of hydroxyl radical from hydrogen peroxide. As a consequence of this chemistry, the adriamycin X Fe complex can cleave DNA on the addition of glutathione or hydrogen peroxide. Although less well defined, the adriamycin X Fe complex can bind to cell membranes and cause oxidative destruction of these membranes in the presence of thiols or hydrogen peroxide.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号