首页 | 本学科首页   官方微博 | 高级检索  
     


Cryo-atomic force microscopy of unphosphorylated and thiophosphorylated single smooth muscle myosin molecules
Authors:Sheng Sitong  Gao Yan  Khromov Alexander S  Somlyo Avril V  Somlyo Andrew P  Shao Zhifeng
Affiliation:Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0736, USA.
Abstract:The purpose of this study was to determine whether steric blockage of one head by the second head of native two-headed myosin was responsible for the inactivity of nonphosphorylated two-headed myosin compared with the high activity of single-headed myosin, as suggested on the basis of electron microscopy of two-dimensional crystals of heavy meromyosin (Wendt, T., Taylor, D., Messier, T., Trybus, K. M., and Taylor, K. A. (1999) J. Cell Biol. 147, 1385-1390; and Wendt, T., Taylor, D., Trybus, K. M., and Taylor, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4361-4366). Our earlier cryo-atomic force microscopy (cryo-AFM) (Zhang, Y., Shao, Z., Somlyo, A. P., and Somlyo, A. V. (1997) Biophys. J. 72, 1308-1318) indicates that thiophosphorylation of the regulatory light chain increases the separation of the two heads of a single myosin molecule, but the thermodynamic probability of steric hindrance by strong binding between the two heads was not determined. We now report this probability determined by cryo-AFM of single whole myosin molecules shown to have normal low ATPase activity (0.007 s-1). We found that the thermodynamic probability of the relative head positions of nonphosphorylated myosin was approximately equal between separated heads as compared with closely apposed heads (energy difference of 0.24 kT (where k is a Boltzman constant and T is the absolute temperature)), and thiophosphorylation increased the number of molecules having separated heads (energy advantage of -1.2 kT (where k is a Boltzman constant and I is the absolute temperature)). Our results do not support the suggestion that strong binding of one head to the other stabilizes the blocked conformation against thermal fluctuations resulting in steric blockage that can account for the low activity of nonphosphorylated two-headed myosin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号