首页 | 本学科首页   官方微博 | 高级检索  
   检索      


AGEs-RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells
Authors:Shaikh Shamim B  Uy Benedict  Perera Amali  Nicholson Louise F B
Institution:Department of Anatomy with Radiology and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. shamims@xtra.co.nz
Abstract:Microglial activation is a significant contributor to the pathogenesis of many neurodegenerative diseases. Microglia respond to a range of stimuli including pathogenic protein deposits such as advanced glycation endproducts (AGEs). AGEs are prominent inflammatory stimuli that accumulate in the ageing brain. AGEs can activate microglia, leading to the production of excessive amounts of inflammatory cytokines and coupling via gap junction proteins especially connexin43 (Cx43). The literature on the expression of microglial Cx43 during inflammation is controversial. Many cellular effects of AGEs are thought to be mediated by the receptor RAGE. There is however, no evidence suggesting Cx43 is a downstream effector of AGEs-RAGE interaction in microglia. In addition, most of the AGEs-related studies have been undertaken using rodent microglia; the information on human microglia is sparse. Microglia of human and rodent origin respond differently to certain stimuli. The aims of this study were to investigate the AGEs-RAGE-mediated activation of human microglia and establish if Cx43 is one of the downstream effectors of AGEs-RAGE interaction in these cells. Human microglial CHME-5 cells were treated with different doses of AGEs for a selected time-period and microglial activation studied using specific markers. The protein expression of RAGE, Cx43 and TNF-α-receptors (RI and RII) was analysed in response to AGEs in the absence/presence of various doses of anti-RAGE Fabs. TNF-α levels in media were measured using ELISA. TNF-α-induced opening of gap junctional channels was assessed by dye uptake assays and the effect of neutralising TNFRII on Cx43 levels was also studied. CHME-5 cells showed an up-regulation of RAGE, TNF-α, TNFRs (especially TNFRII) and Cx43 upon AGEs treatment and a significant dose-dependent drop in the levels of TNF-α, TNFRII and Cx43 in the presence of anti-RAGE Fabs. TNF-α induced gap junctional/hemichannel opening whereas blocking TNFRII inhibited TNF-α-induced increase in Cx43 levels. Results suggested that TNF-α, TNFRII and Cx43 are downstream effectors of the AGEs-RAGE interaction in human microglial CHME-5 cells.
Keywords:AGEs  advanced glycation endproducts  Cbx  Carbenoxolone  Cx43  connexin43  Fab  fragment antigen-binding  Fc  fragment crystallizable region  GAPDH  Glyceraldehyde 3-phosphate dehydrogenase  GJC  gap junction channels  LaCl3  Lanthanam (III) chloride  RAGE  receptor for advanced glycation endproducts  TNF-α  tumour necrosis factor-alpha  TNFRI  tumour necrosis factor-α receptor I  TNFRII  tumour necrosis factor-α receptor II
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号