首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli.
Authors:P M Wikstr?m  L K Lind  D E Berg  G R Bj?rk
Institution:Department of Microbiology, University of Ume?, Sweden.
Abstract:The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kilodalton protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in that order. The synthesis of the 21K and TrmD proteins is 12 and 40-fold lower, respectively, than that of the two r-proteins, although the corresponding parts of the mRNA are equally abundant. This translational control of expression of at least the 21K protein gene (21K), is mediated by a negative control element located between codons 18 and 50 of 21K. Here, we present evidence for a model in which mRNA sequences up to around 100 nucleotides downstream from the start codon of 21K fold back and base-pair to the 21K translation initiation region, thereby decreasing the translation initiation frequency. Mutations in the internal negative control element of 21K that would prevent the formation of the proposed mRNA secondary structure over both the Shine-Dalgarno (SD) sequence and the start codon increased expression up to about 20-fold, whereas mutations that would disrupt the base-pairing with the SD-sequence had only relatively small effects on expression. In addition, the expression increased 12-fold when the stop codon of the preceding gene, rpsP, was moved next to the SD-sequence of 21K allowing the ribosomes to unfold the postulated mRNA secondary structure. The expression increased up to 150-fold when that stop codon change was combined with the internal negative control element base-substitutions that derepressed translation about 20-fold. The negative control element of 21K does not seem to be responsible for the low expression of the trmD gene located downstream. However, a similar negative control element native to trmD can explain at least partly the low expression of trmD. Possibly, the two mRNA secondary structures function to decouple translation of 21K and trmD from that of the respective upstream cistron in order to achieve their independent regulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号