首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins
Authors:Eidenmüller J  Fath T  Hellwig A  Reed J  Sontag E  Brandt R
Affiliation:Department of Neurobiology, IZN, University of Heidelberg, INF 345, 69120 Heidelberg, Germany.
Abstract:Abnormal tau-immunoreactive filaments are a hallmark of tauopathies, including Alzheimer's disease (AD). A higher phosphorylation ("hyperphosphorylation") state of tau protein may represent a critical event. To determine the potential role of tau hyperphosphorylation in these disorders, mutated tau proteins were produced where serine/threonine residues known to be highly phosphorylated in tau filaments isolated from AD patients were substituted for glutamate to simulate a paired helical filament (PHF)-like tau hyperphosphorylation. We demonstrate that, like hyperphosphorylation, glutamate substitutions induce compact structure elements and SDS-resistant conformational domains in tau protein. Hyperphosphorylation-mimicking glutamate-mutated tau proteins display a complete functional loss in its ability to promote microtubule nucleation which can partially be overcome by addition of the osmolyte trimethylamine N-oxide (TMAO), which is similar to phosphorylated tau. In addition, glutamate-mutated tau proteins fail to interact with the dominant brain protein phosphatase 2A isoform ABalphaC, and exhibit a reduced ability to assemble into filaments. Interestingly, wild-type tau and phosphorylation-mimicking tau similarly bind to microtubules when added alone, but the mutated tau is almost completely displaced from the microtubule surface by equimolar concentrations of wild-type tau. The data indicate that glutamate-mutated tau proteins provide a useful model for analyzing the functional consequences of tau hyperphosphorylation. They suggest that several mechanisms contribute to the abnormal tau accumulation observed during tauopathies, in particular a selective displacement of hyperphosphorylated tau from microtubules, a functional loss in promoting microtubule nucleation, and a failure to interact with phosphatases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号