首页 | 本学科首页   官方微博 | 高级检索  
     


DNA barcoding of Oryza: conventional,specific, and super barcodes
Authors:Zhang  Wen  Sun  Yuzhe  Liu  Jia  Xu  Chao  Zou  Xinhui  Chen  Xun  Liu  Yanlei  Wu  Ping  Yang  Xueying  Zhou  Shiliang
Affiliation:1.State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
;2.College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
;3.College of Landscape Architecture, Northeast Forestry University, Haerbin, 150040, China
;4.College of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
;5.Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, China, Beijing, 100038, China
;
Abstract:Key message

We applied the phylogenomics to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity.

Abstract

Rice (genus Oryza) is one of the most important crops in the world, supporting half of the world’s population. Breeding of high-yielding and quality cultivars relies on genetic resources from both cultivated and wild species, which are collected and maintained in seed banks. Unfortunately, numerous seeds are mislabeled due to taxonomic issues or misidentifications. Here, we applied the phylogenomics of 58 complete chloroplast genomes and two hypervariable nuclear genes to determine species identity in rice seeds. Twenty-one Oryza species were identified. Conspecific relationships were determined between O. glaberrima and O. barthii, O. glumipatula and O. longistaminata, O. grandiglumis and O. alta, O. meyeriana and O. granulata, O. minuta and O. malampuzhaensis, O. nivara and O. sativa subsp. indica, and O. sativa subsp. japonica and O. rufipogon. D and L genome types were not found and the H genome type was extinct. Importantly, we evaluated the performance of four conventional plant DNA barcodes (matK, rbcL, psbA-trnH, and ITS), six rice-specific chloroplast DNA barcodes (psaJ-rpl33, trnC-rpoB, rps16-trnQ, rpl22-rps19, trnK-matK, and ndhC-trnV), two rice-specific nuclear DNA barcodes (NP78 and R22), and a chloroplast genome super DNA barcode. The latter was the most reliable marker. The six rice-specific chloroplast barcodes revealed that 17% of the 53 seed accessions from rice seed banks or field collections were mislabeled. These results are expected to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号