首页 | 本学科首页   官方微博 | 高级检索  
     


S100A1 is a novel molecular chaperone and a member of the Hsp70/Hsp90 multichaperone complex
Authors:Okada Miki  Hatakeyama Takashi  Itoh Hideaki  Tokuta Naoki  Tokumitsu Hiroshi  Kobayashi Ryoji
Affiliation:Department of Signal Transduction Sciences, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
Abstract:Although calmodulin is known to be a component of the Hsp70/Hsp90 multichaperone complex, the functional role of the protein remains uncertain. In this study, we have identified S100A1, but not calmodulin or other S100 proteins, as a potent molecular chaperone and a new member of the multichaperone complex. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments indicated the formation of stable complexes between S100A1 and Hsp90, Hsp70, FKBP52, and CyP40 both in vitro and in mammalian cells. S100A1 potently protected citrate synthase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and rhodanese from heat-induced aggregation and suppressed the aggregation of chemically denatured rhodanese and citrate synthase during the refolding pathway. In addition, S100A1 suppressed the heat-induced inactivation of citrate synthase activity, similar to that for Hsp90 and p23. The chaperone activity of S100A1 was antagonized by calmodulin antagonists, such as fluphenazine and prenylamine, that is, indeed an intrinsic function of the protein. The overexpression of S100A1 in COS-7 cells protected transiently expressed firefly luciferase and Escherichia coli beta-galactosidase from inactivation during heat shock. The results demonstrate a novel physiological function for S100A1 and bring us closer to a comprehensive understanding of the molecular mechanisms of the Hsp70/Hsp90 multichaperone complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号