首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detection of a glycosylated subunit in human serum ferritin.
Authors:S J Cragg  M Wagstaff  and M Worwood
Abstract:Chemical reaction of coenzyme M, sodium 2-mercaptoethanesulphonate (HS-CoM, Na+), and formaldehyde formed sodium 2-(hydroxymethylthio)ethanesulphonate (HOCH2-S-CoM), whereas reaction with the ammonium salt of HS-CoM yielded iminobis-2-(methylthio)ethanesulphonate], monoammonium salt NH = (CH2 - S - CoM)2]. In water, NH = (CH2 - S - CoM)2 decomposed to 2-(aminomethylthio)ethanesulphonate (NH2CH2 - S - CoM) and HOCH2-S-CoM. NH-2-CH2 - CoM was degraded further to form more HOCH2-S-CoM. The structures of these coenzyme M derivatives were confirmed by i.r. and n.m.r. spectroscopy and by elemental analysis. When added to cell extracts of Methanobacterium thermoautotrophicum, methane was formed from either HOCH2 - S - CoM or NH = (CH2 - S - CoM)2 at rates comparable with the rate of methane formation from the methanogenic precursor 2-(methylthio)-ethanesulphonate (CH3 - S - CoM). Formaldehyde was reduced to methane at similar rates. In addition, certain hemimercaptals, including thiazolidine and thiazolidine-4-carboxylate, were reduced, although at slower rates. The reduction of formaldehyde, thiazolidine, or thiazolidine-4-carboxylate required catalytic amounts of HS-CoM. ATP was required by cells extracts for reduction of each of these methane precursors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号