首页 | 本学科首页   官方微博 | 高级检索  
     


On the mechanism of mitochondrial uncoupling protein 1 function
Authors:Breen Eamon P  Gouin Sebastien G  Murphy Andrew F  Haines Lee R  Jackson Angela M  Pearson Terry W  Murphy Paul V  Porter Richard K
Affiliation:School of Biochemistry and Immunology, Trinity College Dublin, College Green, Dublin 2, Ireland.
Abstract:Native uncoupling protein 1 (UCP 1) was purified from rat mitochondria by hydroxyapatite chromatography and identified by peptide mass mapping and tandem mass spectrometry. Native and expressed UCP 1 were reconstituted into liposomes, and proton flux through UCP 1 was shown to be fatty acid-dependent and GDP-sensitive. To investigate the mechanism of action of UCP 1, we determined whether hydrophilic modification of the omega-carbon of palmitate effected its transport function. We show that proton flux was greater through native UCP 1-containing proteoliposomes when facilitated by less hydrophilically modified palmitate (palmitate > omega-methoxypalmitate > omega-hydroxypalmitate with little or no proton flux due to glucose-O-omega-palmitate or undecanesulfonate). We show that non-proton-dependent charge transfer was greater when facilitated by less hydrophilically modified palmitate (palmitate/undecanesulfonate > omega-methoxypalmitate > omega-hydroxypalmitate, with no non-proton-dependent charge transfer flux due to glucose-O-omega-palmitate). We show that the GDP-inhibitable oxygen consumption rate in brown adipose tissue mitochondria was reversed by palmitate (as expected) but not by glucose-O-omega-palmitate. Our data are consistent with the model that UCP 1 flips long-chain fatty acid anions and contradict the "cofactor" model of UCP 1 function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号