首页 | 本学科首页   官方微博 | 高级检索  
     


pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis
Authors:Meghji S  Morrison M S  Henderson B  Arnett T R
Affiliation:Oral and Maxillofacial Surgery, Eastman Dental Institute, London WC1X 8LD, United Kingdom.
Abstract:We examined the effects of HCO(3)(-) and CO(2) acidosis on osteoclast-mediated Ca(2+) release from 3-day cultures of neonatal mouse calvaria. Ca(2+) release was minimal above pH 7.2 in control cultures but was stimulated strongly by the addition of small amounts of H(+) to culture medium (HCO(3)(-) acidosis). For example, addition of 4 meq/l H(+) reduced pH from 7.12 to 7.03 and increased Ca(2+) release 3.8-fold. The largest stimulatory effects (8- to 11-fold), observed with 15-16 meq/l added H(+), were comparable to the maximal Ca(2+) release elicited by 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3); 10 nM], parathyroid hormone (10 nM), or prostaglandin E(2) (1 microM); the action of these osteolytic agents was attenuated strongly when ambient pH was increased from approximately 7.1 to approximately 7.3. CO(2) acidosis was a less effective stimulator of Ca(2+) release than HCO(3)(-) acidosis over a similar pH range. Ca(2+) release stimulated by HCO(3)(-) acidosis was almost completely blocked by salmon calcitonin (20 ng/ml), implying osteoclast involvement. In whole mount preparations of control half-calvaria, approximately 400 inactive osteoclast-like multinucleate cells were present; in calvaria exposed to HCO(3)(-) acidosis and to the other osteolytic agents studied, extensive osteoclastic resorption, with perforation of bones, was visible. HCO(3)(-) acidosis, however, reduced numbers of osteoclast-like cells by approximately 50%, whereas 1,25(OH)(2)D(3) treatment caused increases of approximately 75%. The results suggest that HCO(3)(-) acidosis stimulates resorption by activating mature osteoclasts already present in calvarial bones, rather than by inducing formation of new osteoclasts, and provide further support for the critical role of acid-base balance in controlling osteoclast function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号