首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir <Emphasis Type="Italic">Abies pinsapo</Emphasis>
Authors:Juan-Carlos Linares  Antonio Delgado-Huertas  J Julio Camarero  José Merino  José A Carreira
Institution:1.área de Ecología,Universidad Pablo de Olavide,Sevilla,Spain;2.Estación Experimental del Zaidín (CSIC),Granada,Spain;3.ARAID, Instituto Pirenaico de Ecología (CSIC),Zaragoza,Spain;4.área de Ecología,Universidad de Jaén,Jaén,Spain
Abstract:The gas-exchange and radial growth responses of conifer forests to climatic warming and increasing atmospheric CO2 have been widely studied. However, the modulating effects of variables related to stand structure (e.g., tree-to-tree competition) on those responses are poorly explored. The basal-area increment (BAI) and C isotope discrimination (C stable isotope ratio; δ13C) in the Mediterranean fir Abies pinsapo were investigated to elucidate the influences of stand competition, atmospheric CO2 concentrations and climate on intrinsic water-use efficiency (WUEi). We assessed the variation in δ13C of tree-rings from dominant or co-dominant trees subjected to different degrees of competition. A high- (H) and a low-elevation (L) population with contrasting climatic constraints were studied in southern Spain. Both populations showed an increase in long-term WUEi. However, this increase occurred more slowly at the L site, where a decline of BAI was also observed. Local warming and severe droughts have occurred in the study area over the past 30 years, which have reduced water availability more at lower elevations. Contrastingly, trees from the H site were able to maintain high BAI values at a lower cost in terms of water consumption. In each population, trees subjected to a higher degree of competition by neighboring trees showed lower BAI and WUEi than those subjected to less competition, although the slopes of the temporal trends in WUEi were independent of the competitive micro-environment experienced by the trees. The results are consistent with an increasing drought-induced limitation of BAI and a decreasing rate of WUEi improvement in low-elevation A. pinsapo forests. This relict species might not be able to mitigate the negative effects of a decrease in water availability through a reduction in stomatal conductance, thus leading to a growth decline in the more xeric sites. An intense and poorly asymmetric competitive environment at the stand level may also act as an important constraint on the adaptive capacity of these drought-sensitive forests to climatic warming. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Carbon isotope discrimination  Global change  Stand structure  Drought            Abies pinsapo
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号