Abstract: | Influx of calcium ions cannot control a generatory potential induced by the intraneuronal system because calcium ions enter the cell during impulses. These impulses are the result of problem solving and must not influence directly the generatory potential. Therefore cAMP and not calcium controls the permeability of sodium and potassium channels from the inside of the neuron. However the calcium ions and membrane potential of mitochondria affect the impact of cAMP injections. An increase in the intracellular concentration of free Ca2+ induced by the injection of Ca-EGTA buffer with 5.10(-7) M free Ca2+, electric excitation, uncouplers of oxidative phosphorylation or arsenate leads to an increase of cAMP-dependent depolarization and the inward current. The injection of Ca-EGTA buffer with 10(-5) M free Ca2+ and drop in [Ca2+]in by EGTA as well as generation of impulses after cAMP injection decrease the cAMP effect. As rise in [Ca2+]in activates phosphodiesterase and uncouples oxidative phosphorylation, and vanadate in contrast to arsenate suppresses the cAMP effect, a hypothesis is advanced that activating effect of calcium on cAMP action is associated with neuron deenergization. |