首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanical impedance as determinant of inspiratory neural drive during exercise in humans
Authors:Hussain  S N; Pardy  R L; Dempsey  J A
Abstract:Five healthy males exercised progressively with small 2-min increments in work load. We measured inspiratory drive (occlusion pressure, P0.1), pulmonary resistance (RL), dynamic pulmonary compliance (Cdyn), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi). Minute ventilation (VE), mean inspiratory flow rate (VT/TI), and P0.1 all increased exponentially with increased work load, but P0.1 increased at a faster rate than did VT/TI or VE. Thus effective impedance (P0.1/VT/TI) rose throughout exercise. The increasing P0.1 was mostly due to augmented Pdi and coincided with increased EMGdi during this initial portion of inspiration. We found no consistent change in RL or Cdyn throughout exercise. With He breathing (80% He-20% O2), RL was reduced at all work loads; P0.1 fell in comparison with air-breathing values and VE, VT, and VT/TI rose in moderate and heavy work; and P0.1/VT/TI was unchanged with increasing exercise loads. Step reductions in gas density at a constant work load of any intensity showed an immediate reduction in the rate of rise of EMGdi and Pdi followed by increased VT/TI, breathing frequency, and hypocapnia. These changes were maintained during prolonged periods of unloading and were immediately reversible on return to air breathing. These data are consistent with the existence of a reflex effect on the magnitude of inspiratory neural drive during exercise that is sensitive to the load presented by the normal mechanical time constant of the respiratory system. This "load" is a significant determinant of the hyperpneic response and thus of the maintenance of normocapnia during exercise.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号