首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats
Authors:Boulamery-Velly A  Simon N  Vidal J  Mouchet J  Bruguerolle B
Affiliation:Medical and Clinical Pharmacology Laboratory, Université de la Méditerranée, Faculté de Médecine de Marseille, France.
Abstract:The effects of food on biological rhythms may influence the findings of chronopharmacological studies. The present study evaluated the influence of a restricted food access during the rest (light) span of nocturnally active Wistar rats on the 24 h time organization of biological functions in terms of the circadian rhythms of temperature (T), heart rate (HR), and locomotor activity (LA) in preparation for subsequent studies aimed at evaluating the influence of timed food access on the pharmacokinetics and pharmacodynamics of medications. Ten-wk-old male Wistar rats were housed under controlled 12:12 h light:dark (LD) environmental conditions. Food and water were available ad libitum, excepted during a 3 wk period of restriction. Radiotelemetry transmitters were implanted to record daily rhythms in T, HR, and LA. The study lasted 7 wk and began after a 21-d recovery span following surgery. Control baseline data were collected during the first wk (W1). The second span of 3 wk duration (W2 to W4) consisted of the restricted feeding regimen (only 3 h access to food between 11:00 and 14:00 h daily) during the L (rest span) under 12:12 h LD conditions. The third period of 3 wk duration (W5 to W7) consisted of the recovery span with ad libitium normal feeding. Weight loss in the amount of 5% of baseline was observed during W1 with stabilization of body weight thereafter during the remaining 2 wk of food restriction. The 3 h restricted food access during the L rest span induced a partial loss of circadian rhythmicity and the emergence of 12 h rhythms in T, HR, and LA. Return to ad libitum feeding conditions restored circadian rhythmicity in the manner evidenced during the baseline control span. Moreover, the MESORS and amplitudes of the T, HR, and LA 24 h patterns were significantly attenuated during food restriction (p < 0.001) and then returned to initial values during recovery. These changes may be interpreted as a masking effect, since T, HR, and LA are known to directly react to food intake. The consequences of such findings on the methods used to conduct chronokinetic studies, such as the fasting of animals the day before testing, are important since they may alter the temporal structure of the organism receiving the drug and thereby compromise findings.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号