首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus
Authors:Murthy Mahadev  Hamilton Jillonne  Greiner Rebecca S  Moriguchi Toru  Salem Norman  Kim Hee-Yong
Affiliation:Section of Nutritional Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, 12420 Parklawn Drive, Room 114, Rockville, MD 20852, USA.
Abstract:In this study, we have examined the effects of n-3 fatty acid deficient diets on the phospholipids (PL) molecular species composition in the hippocampus. Female rats were raised for two generations on diets containing linoleic acid (18:2n-6), with or without supplementation of alpha-linolenic acid (18:3n-3) or 18:3n-3 plus docosahexaenoic acid (22:6n-3). At 84 days of age, the hippocampal phospholipids were analyzed by reversed phase HPLC-electrospray ionization mass spectrometry. Depleting n-3 fatty acids from the diet led to a reduction of 22:6n-3 molecular species in phosphatidylcholine (PC), phosphatidylethanolamine (PE), PE-plasmalogens (PLE), and phosphatidylserine (PS) by 70-80%. In general, 22:6n-3 was replaced with 22:5n-6 but the replacement at the molecular species level did not always occur in a reciprocal manner, especially in PC and PLE. In PC, the 16:0,22:6n-3 species was replaced by 16:0,22:5n-6 and 18:0,22:5n-6. In PLE, substantial increases of both 22:5n-6 and 22:4n-6 species compensated for the decreases in 22:6n-3 species in n-3 fatty acid deficient groups. While the total PL content was not affected by n-3 deficiency, the relative distribution of PS decreased by 28% with a concomitant increase in PC.The observed decrease of 22:6n-3 species along with PS reduction may represent key biochemical changes underlying losses in brain-hippocampal function associated with n-3 deficiency.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号