首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light scattering spectroscopy of the squid axon membrane
Authors:LE Moore  M Tufts  M Soroka
Institution:1. Department of Physiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio U.S.A.;2. Marine Biological Laboratory, Woods Hole, Mass. U.S.A.
Abstract:Light scattering studies on the giant squid axon were done using the technique of optical mixing spectroscopy. This experimental approach is based on the use of laser light to detect the fluctuations of membrane macromolecules which are associated with conductance fluctuations. The light scattering spectra were similar to the Lorentzian-like behavior of conductance fluctuations, possibly reflecting an underlying conformational change in the specific membrane sites responsible for the potassium ion conductance. The amplitude of the spectra measured, increased when the membrane was depolarized and decreased on hyperpolarization. The spectra were fit to the sum of two terms, a (1/fcomponent and a simple Lorentzian term. Spectra from deteriorating axons did not show sensitivity to membrane potential changes. It is shown theoretically that fluctuations due to the voltage-dependent variable, n, of the Hodgkin-Huxley formalism are identical to the voltage fluctuations. The derived power spectrum is that of a second order system, capable of showing resonance peaking only if the voltage dependence of the potassium rate constants is included in the analysis. The lack of resonance peaking in the observed light scattering spectra, indicates that the data are best described by a damped second order system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号