首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reciprocal Regulation of Endocytosis and Metabolism
Authors:Costin N Antonescu  Timothy E McGraw  Amira Klip
Institution:1.Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada;2.Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065;3.Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
Abstract:The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe3+, K+) or efflux (e.g., Na+) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.Interactions between the cell and its environment obligatorily involve events at the plasma membrane. Cell-surface proteins mediate nutrient uptake, product release, and the sensing of environmental changes, including signals from other cells. Appropriate sensing and response to extracellular cues is essential for the individual cell’s survival and for the coordinated cellular behavior in multicellular organisms. Accordingly, maintenance and dynamics of membrane proteins are fundamental mechanisms of cellular homeostasis and survival.Most plasma membrane proteins are in defined equilibria with intracellular endosomal compartments, such that the amount of a given protein at the plasma membrane is determined by the balance of its endocytosis and its recycling back to the cell surface from endosomes and other intracellular compartments (Fig. 1). Changes in the kinetics of membrane protein traffic acutely affect the levels of individual proteins at the cell surface and thereby impact how cells intake nutrients, sense the environment, and respond to external cues.Open in a separate windowFigure 1.Dynamic regulation of the cell-surface content of membrane proteins. Integral membrane proteins found at the cell surface are dynamically localized to the plasma membrane. The amount of any of these proteins at the cell surface is the result of the balance of exocytosis or recycling of vesicles containing that protein from intracellular membrane compartments and the endocytosis of the protein from the cell surface. Regulation of either the rate of exocytosis or endocytosis results in alteration of the cell-surface content of a given protein.Selective molecular mechanisms trigger traffic of plasma membrane proteins through endomembranes. Among them, ubiquitination and phosphorylation stand out as they can directly target the cargo proteins. Ubiquitination is the covalent attachment of the 76-amino acid polypeptide ubiquitin to the ε-amino group of specific lysine residues (reviewed by Miranda and Sorkin 2007; and see also Piper et al. 2014). Ubiquitination of cell-surface proteins is the principal mechanism of control of endocytosis in yeast (MacGurn et al. 2012), whereas in mammals, additional molecular mechanisms regulate the endocytosis of cell-surface proteins, including alterations in conformation that impact interaction with other proteins, and as mentioned, phosphorylation. Each of these modifications can either enhance or reduce the rates internalization, recycling, or degradation of specific proteins, highlighting the complexity of the regulation of endomembrane traffic. The intricate mechanisms that underlie the reciprocal regulation of endocytosis and metabolism are beginning to be understood. Here we discuss the endocytosis mechanisms in the regulation of cellular intake or efflux of iron, cholesterol, Na+, and glucose, and in the regulation of receptor signaling relevant to metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号