首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains.
Authors:J Ding  A S Wexler  S A Binder-Macleod
Institution:Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware 19716, USA.
Abstract:Because muscles must be repetitively activated during functional electrical stimulation, it is desirable to identify the stimulation pattern that produces the most force. Previous experimental work has shown that the optimal pattern contains an initial high-frequency burst of pulses (i.e., an initial doublet or triplet) followed by a low, constant-frequency portion. Pattern optimization is particularly challenging, because a muscle's contractile characteristics and, therefore, the optimal pattern change under different physiological conditions and are different for each person. This work describes the continued development and testing of a mathematical model that predicts isometric forces from fresh and fatigued muscles in response to brief trains of electrical pulses. By use of this model and an optimization algorithm, stimulation patterns that produced maximum forces from each subject were identified.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号