首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism and functional significance of TRPC channel multimerization
Authors:Villereal Mitchel L
Affiliation:Neurobiology, Pharmacology & Physiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA. mitch@bsd.uchicago.edu
Abstract:Ca(2+) signaling regulates many important physiological events within a diverse set of living organisms. In particular, sustained Ca(2+) signals play an important role in controlling cell proliferation, cell differentiation and the activation of immune cells. Two key elements for the generation of sustained Ca(2+) signals are store-operated and receptor-operated Ca(2+) channels that are activated downstream of phospholipase C (PLC) stimulation, in response to G-protein-coupled receptor or growth factor receptor stimulation. One goal of this review is to help clarify the role of canonical transient receptor potential (TRPC) proteins in the formation of native store-operated and native receptor-operated channels. Toward that end, data from studies of endogenous TRPC proteins will be reviewed in detail to highlight the strong case for the involvement of certain TRPC proteins in the formation of one subtype of store-operated channel, which exhibits a low Ca(2+)-selectivity, in contrast to the high Ca(2+)-selectivity exhibited by the CRAC subtype of store-operated channel. A second goal of this review is to highlight the growing body of evidence indicating that native store-operated and native receptor-operated channels are formed by the heteromultimerization of TRPC subunits. Furthermore, evidence will be provided to argue that some TRPC proteins are able to form multiple channel types.
Keywords:Store-operated channels   Receptor-operated channels   Heteromeric channels   TRPC channels   Capacitative calcium entry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号