首页 | 本学科首页   官方微博 | 高级检索  
     


SO2907, a putative TonB-dependent receptor, is involved in dissimilatory iron reduction by Shewanella oneidensis strain MR-1
Authors:Qian Yufeng  Shi Liang  Tien Ming
Affiliation:Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Abstract:Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH(2)). The peptide harboring the FLNH(2) can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared with wild type (wt), the so2907 gene deletion (ΔSO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ΔSO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with K(d) of approximate 50 μm. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.
Keywords:Iron Metabolism   Oxidation-Reduction   Oxygen Radicals   Reactive Oxygen Species (ROS)   Receptors   Protein Oxidation   Iron Chelator   Metal-catalyzed Oxidation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号