首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of the phospholipid phase transition in the regulation of glucagon binding to lecithin
Authors:Richard M Epand  Raquel Epand
Institution:Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario L8N 3Z5 Canada
Abstract:Glucagon can interact rapidly with multilamellar vesicles of dimyristoyl glycerophosphocholine over a narrow temperature range around or above the phase transition temperature of the pure phospholipid. The temperature dependence of the rates arises, in large part, from glucagon-induced alterations in the phase transition properties of the phospholipid. Similar effects are observed with dilaury glycerophosphocholine but the rate of reaction of glucagon with multilamellar dipalmitoyl glycerophosphocholine is too slow to measure.The rate of reaction of glucagon with equimolar mixtures of two phospholipid molecules has also been studied. Mixtures of dilauryl glycerophosphocholine and distearoyl glycerophosphocholine are known to exhibit lateral phase separation in the gel state. The presence of distearoyl glycerophosphocholine has no effect on the rate of reaction with glucagon, despite the increased number of phase boundaries present. In the case of mixtures of dilauryl glycerophosphocholine and dimyristoyl glycerophosphocholine, glucagon appears to induce some lateral phase separation. This is demonstrated by the ability of glucagon to react rapidly with this lipid mixture, even at temperatures well below the phase transition temperature of the mixture and by differential scanning calorimetry.The thermodynamics of the binding of glucagon to dimyristoyl glycerophosphocholine and dilauryl glycerophosphocholine were analyzed with Scatchard plots calculated from measurements of the fluorescence enhancement caused by lipids. Equilibrium binding constants of glucagon to dimyristoyl glycerophosphocholine and dilauryl glycerophosphocholine are 1·105 and 5·104 M?1, respectively. These values are relatively insensitive to temperature, indicating that the equilibrium being measured is between lipid-bound glucagon and free lipid which has had its phase transition properties altered. The number of moles of lipid bound per mole of glucagon decreases markedly above the phase transition temperature. In the water-soluble complex formed between glucagon and dimyristoyl glycerophosphocholine, the peptide binds directly to only 40% of the lipid molecules but, nevertheless, is able to modify the phase transition properties of all of the lipid in the particle.
Keywords:Glucagon  Binding content  Phase transition  Phospholipid  DLPC  DMPC  DSPC  Pipes  1  4-piperazine-diethanesulfonic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号