首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of thrombin mediated eNOS phosphorylation in endothelial cells is dependent on ATP levels after stimulation
Authors:Thors Brynhildur  Halldórsson Haraldur  Jónsdóttir Gudbjorg  Thorgeirsson Gudmundur
Affiliation:Institute of Pharmacy, Pharmacology and Toxicology, University of Iceland, Hagi Hofsvallagotu 53, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Iceland.
Abstract:Conflicting results have been reported concerning the role of AMP-activated protein kinase (AMPK) in mediating thrombin stimulation of endothelial NO-synthase (eNOS). We examined the involvement of two upstream kinases in AMPK activation in cultured human umbilical endothelial cells, LKB1 stimulated by a rise in intracellular AMP/ATP ratio, and Ca(+2)/CaM kinase kinase (CaMKK) responding to elevation of intracellular Ca(+2). We also studied the effects of AMPK activation on the downstream target eNOS. In culture medium 1640 the level of intracellular ATP was unchanged after thrombin stimulation and the CaMKK inhibitor STO-609 totally inhibited phosphorylation of AMPK and acetyl coenzyme A carboxylase (ACC) but not eNOS. In Morgan's medium 199 thrombin caused a significant lowering of intracellular ATP and STO-609 only partially inhibited the phosphorylation of AMPK, ACC and eNOS. Inhibition of AMPK by Compound C or AMPK downregulation using siRNA partially inhibited the phosphorylation of eNOS in medium 199 but not in 1640, underscoring a clear difference in the pathways mediating thrombin-stimulated eNOS phosphorylation in different culture media. Thus, conditions subjecting endothelial cells to a fall in ATP after thrombin stimulation facilitate activation of pathways partly dependent on AMPK causing downstream phosphorylation of eNOS. In contrast, under culture conditions that do not facilitate a fall in ATP after stimulation, AMPK activation is exclusively mediated by CaMKK and does not contribute to the phosphorylation of eNOS.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号