首页 | 本学科首页   官方微博 | 高级检索  
     


In Planta Localization of Stilbenes within Picea abies Phloem
Authors:Tuula Jyske  Katsushi Kuroda  Jussi-Petteri Suuronen  Andrey Pranovich  Sílvia Roig-Juan  Dan Aoki  Kazuhiko Fukushima
Abstract:Phenolic stilbene glucosides (astringin, isorhapontin, and piceid) and their aglycons commonly accumulate in the phloem of Norway spruce (Picea abies). However, current knowledge about the localization and accumulation of stilbenes within plant tissues and cells remains limited. Here, we used an innovative combination of novel microanalytical techniques to evaluate stilbenes in a frozen-hydrated condition (i.e. in planta) and a freeze-dried condition across phloem tissues. Semiquantitative time-of-flight secondary ion-mass spectrometry imaging in planta revealed that stilbenes were localized in axial parenchyma cells. Quantitative gas chromatography analysis showed the highest stilbene content in the middle of collapsed phloem with decreases toward the outer phloem. The same trend was detected for soluble sugar and water contents. The specimen water content may affect stilbene composition; the glucoside-to-aglycon ratio decreased slightly with decreases in water content. Phloem chemistry was correlated with three-dimensional structures of phloem as analyzed by microtomography. The outer phloem was characterized by a high volume of empty parenchyma, reduced ray volume, and a large number of axial parenchyma with porous vacuolar contents. Increasing porosity from the inner to the outer phloem was related to decreasing compactness of stilbenes and possible secondary oxidation or polymerization. Our results indicate that aging-dependent changes in phloem may reduce cell functioning, which affects the capacity of the phloem to store water and sugar, and may reduce the defense potential of stilbenes in the axial parenchyma. Our results highlight the power of using a combination of techniques to evaluate tissue- and cell-level mechanisms involved in plant secondary metabolite formation and metabolism.The bark of conifers has anatomically and chemically integrated defense strategies that are either constitutive (i.e. continuously produced) or inducible (i.e. activated as a response to insect or pathogen attack; Krokene, 2015). Many defense traits exist in both forms (Franceschi et al., 2005). For example, axial phloem parenchyma cells (or polyphenolic parenchyma) are critical in conifer bark defense. These cells regularly form in Pinaceae during annual phloem formation (Franceschi et al., 1998, 2000; Krekling et al., 2000; Jyske et al., 2015) but also are produced on invasion (Franceschi et al., 2005; Krokene, 2015). In Norway spruce (Picea abies) phloem, axial parenchyma forms distinctive, continuous tangential sheets across conducting (i.e. noncollapsed) and nonconducting (i.e. collapsed) tissue.Pioneering studies using microscopy with different dye agents and autofluorescence showed that the large vacuole is a special feature of the axial phloem parenchyma that contains phenolic substances (i.e. phenolic bodies; Franceschi et al., 1998). Microscopic imaging techniques also showed that polyphenolic content is highly dynamic (Franceschi et al., 1998, 2000, 2005) and changes seasonally (Krekling et al., 2000). Within the last 5 years, progress in laser microdissection (LMD) has facilitated the sampling of individual tissues and cells, providing information about the exact chemical composition of phenolic content. Li et al. (2012) used LMD to show that the axial parenchyma is the main site of phenolic accumulation in spruce bark, including that of stilbene compounds.Stilbenes are secondary metabolites that are composed of two phenol moieties linked by a C2 bridge. These compounds are derived from the phenylpropanoid pathway, in which the last steps of biosynthesis are catalyzed by stilbene synthase (Chong et al., 2009). There is increasing interest in these antioxidant, antibacterial, and antiinflammatory compounds for use in healthy human diets, therapeutic approaches, and as protective agents in materials sciences (Shibutani et al., 2004; Metsämuuronen and Siren, 2014; Reinisalo et al., 2015; Hedenström et al., 2016; Sirerol et al., 2016). The tetrahydroxystilbene glucosides trans-astringin (3,3ʹ,4ʹ,5-tetrahydroxystilbene 3-O-β-d-glucoside) and trans-isorhapontin (3,4ʹ,5-trihydroxy-3ʹ-methoxystilbene 3-O-β-d-glucoside) are the most abundant constitutive stilbene compounds of Norway spruce, while the trihydroxystilbene glucoside trans-piceid (resveratrol 3-O-β-glucoside) and stilbene aglycons (i.e. without the sugar moiety) are less abundant. Stilbene synthesis in spruce probably proceeds through the formation of resveratrol (i.e. aglycon of piceid) followed by further modifications (i.e. hydroxylation, O-methylation, and O-glycosylation) to yield tetrahydroxystilbene glucosides (Hammerbacher et al., 2011). Stilbenes are assumed to provide protection against a wide variety of environmental stressors (Franceschi et al., 2005; Witzell and Martin, 2008; Chong et al., 2009). Stilbenes appear to contribute to antifungal defense in spruce (Hammerbacher et al., 2011, 2013). The fungal inoculation of spruce bark with the blue-stain fungus Endoconidiophora polonica (previously named Ceratocystis polonica; de Beer et al., 2014) causes astringin levels to decrease, in parallel with increasing dimeric stilbene glucoside levels in the LMD-isolated axial phloem parenchyma (Li et al., 2012) or increasing levels of corresponding aglycons in bulk tissue (Viiri et al., 2001). During the annual formation of phloem in Norway spruce, the accumulation of stilbene glucosides inside the newest, LMD-isolated phloem ring is preceded by the formation and cellular development of a new band of axial parenchyma (Jyske et al., 2015). These observations strongly indicate that the inducible and constitutive stilbene compounds of spruce phloem are both stored and synthesized in the axial parenchyma.New mass spectrometry imaging techniques provide significant improvements in the mapping of plant metabolites (Briggs and Seah, 1993; Vickerman and Briggs, 2001; Burrell et al., 2007; Cha et al., 2008; Lee et al., 2012; Bjarnholt et al., 2014; Aoki et al., 2016). To elucidate the synthesis, distribution, and metabolism of secondary plant metabolites, it is essential to gather positional information about them in a living state, as pretreatment of specimens, such as drying, may change the distribution and concentration features of soluble chemicals (Metzner et al., 2008; Li et al., 2012; Kuroda et al., 2013). In this study, we used a unique system of time-of-flight secondary ion mass spectrometry and scanning electron microscopy connected with a cryo-shuttle (cryo-TOF-SIMS/SEM) to study the localization and accumulation patterns of stilbenes within cells and tissues of phloem. This system has been developed to study chemical distributions at high-spatial resolution (1 µm) directly from the surfaces of plant specimens in a frozen-hydrated state (i.e. in planta) representing living tissues (Kuroda et al., 2013; Aoki et al., 2016). Time-of-flight secondary ion mass spectrometry (TOF-SIMS) directly detects organic and inorganic compounds on the specimen surface over a broad mass-to-charge ratio (m/z) range by mass spectrometry with high chemical sensitivity. Specimen surface morphology is visualized by the detection of total secondary ion content. The quality of cellular integrity may be further observed by scanning electron microscopy connected with a cryo-shuttle (cryo-SEM) imaging of the frozen surface of the same specimen. The cryo-TOF-SIMS/SEM system has still rarely been applied to the analysis of plant physiology (Metzner et al., 2008, 2010; Iijima et al., 2011; Kuroda et al., 2013; Aoki et al., 2016).Mass spectrometer imaging techniques consist of an ionizer and a mass analyzer. In the TOF-SIMS system, secondary ion mass spectrometry is used as an ionizer and time-of-flight as a mass analyzer. In another mainstream imaging mass spectrometry technique, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), matrix-assisted laser desorption/ionization is used as ionizer. Compared with TOF-SIMS, MALDI-MS is more quantitative and has high-Mr acceptance, but the resolution of MALDI-MS is not high enough for cell-level detection (Aoki et al., 2016). Instead, the spatial resolution of TOF-SIMS is superior to focus on cell functions. The disadvantage of TOF-SIMS is that the ionization and fragmentation phenomenon may be affected by the matrix effect, causing some degree of uncertainty. However, when time-of-flight secondary ion mass spectrometry connected with a cryo-shuttle (cryo-TOF-SIMS) is used in combination with quantitative gas chromatography, it is very powerful to study the positional and temporal distributions of metabolites within living plants.To complement TOF-SIMS analysis, we applied quantitative chemical microanalysis methods to study the amounts of stilbene glucosides and to correlate those with the amounts of total extractives, monosaccharides and disaccharides, and water across phloem and bark. The methods include tangential cryo-sectioning of tissues and their chemical microanalysis by gas chromatography with flame-ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS).To combine the chemical information with phloem morphology, the cellular and subcellular features of the axial phloem parenchyma were analyzed by three-dimensional (3D) synchrotron radiation microtomography (µCT). µCT is a prominent tool that has gained popularity for 3D analysis of xylem structure and physiology (Brodersen, 2013; Cochard et al., 2015), but only recently has it been applied to the 3D analysis of phloem (Jyske et al., 2015). This method offers advantages over traditional light microscopic approaches, as high-throughput data at the submicrometer level can be produced from significantly larger tissue volumes. The data allow for representative volumetric analysis of cellular distributions along with 3D visualization of subcellular features.In this study, we used a novel combination of cutting-edge techniques to analyze in parallel (1) in planta cellular localization and accumulation of stilbene glucosides across phloem and bark by semiquantitative cryo-TOF-SIMS/SEM; (2) tissue-level quantitative amounts of stilbene glucosides, total extractives, and monosaccharides and disaccharides across phloem and bark by tangential cryo-sectioning and GC-FID and GC-MS; (3) 3D cell abundance distributions across phloem and bark by µCT; and (4) variation in water content across phloem and bark (Fig. 1).Open in a separate windowFigure 1.Schematic presentation of the specimen structure and preparation for different analyses. Sample blocks were taken from living tree stem (A) or stem discs (B) at 1.3 m on the stem. The blocks (C) containing outer bark (periderm), phloem, cambium, and part of the outermost xylem ring (D; transverse view of phloem and bark) were further divided into subblocks (1–3; C and E). Subblocks 1 and 2 were quick frozen, and subblock 3 was fixed chemically. Subblock 1 was used for the direct chemical mapping of stilbenes across the phloem from the cambium to the outer bark (i.e. semiquantitative analysis of stilbene localization and accumulation across transverse and radial surfaces [purple] of the tissue block by TOF-SIMS; E-1). To obtain quantitative data on the amounts of stilbenes, other extractives, and carbohydrates across phloem and bark, tangential cryo-sections (250 or 450 µm each; cut slices illustrated with purple in E-2) were cut across subblock 2 and directed for chemical microanalysis by GC-FID (E-2). Subblock 3 was divided into four to six zones, and from each zone, small cuboids (illustrated with purple in E-3) were cut and directed for morphological analysis of phloem by phase-contrast µCT (E-3). Water content across the phloem and bark was analyzed from separate fresh blocks, which were further cut tangentially into thin sections. Black arrows indicate the radial direction from the cambium toward the outer bark. Purple areas show the analyzed locations of each subblock (E). Note that schematic drawings are not to scale.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号