首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the possible origin and evolution of the genetic code
Authors:Thomas H Jukes
Institution:1. Space Sciences Laboratory, University of California, 94720, Berkeley, Calif, USA
Abstract:The genetic code is examined for indications of possible preceding codes that existed during early evolution. Eight of the 20 amino acids are coded by ‘quartets’ of codons with four-fold degeneracy, and 16 such quartets can exist, so that an earlier code could have provided for 15 or 16 amino acids, rather than 20. If two-fold degeneracy is postulated for the first position of the codon, there could have been 10 amino acids in the code. It is speculated that these may have been phenylalanine, valine, proline, alanine, histidine, glutamine, glutamic acid, aspartic acid, cysteine and glycine. There is a notable deficiency of arginine in proteins, despite the fact that it has six codons. Simultaneously, there is more lysine in proteins than would be expected from its two codons, if the four bases in mRNA are equiprobable and are arranged randomly. It is speculated that arginine is an ‘intruder’ into the genetic code, and that it may have displaced another amino acid such as ornithine, or may even have displaced lysine from some of its previous codon assignments. As a result, natural selection has favored lysine against the fact that it has only two codons. The introduction of tRNA into protein synthesis may have been a cataclysmic and comparatively sudden event, since duplication of tRNA takes place readily, and point mutations could rapidly differentiate members of the family of duplicates from each. Two tRNAs for different amino acids may have a common ancestor that existed more recently than the separation of the prokaryotes and eukaryotes. This is shown by homology of twoE. coli tRNAs for glycine and valine, and two yeast tRNAs for arginine and lysine.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号