首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in the antioxidative systems in mitochondria during ripening of pepper fruits
Institution:1. Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;2. Department of Chemical Engineering, University of Texas, Austin, TX78712, USA;1. Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;2. Lady Davis Institute–Jewish General Hospital, McGill University, Montreal, Canada, H3T 1E2;3. Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;4. Department of Diabetic Nephropathy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;5. Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
Abstract:The presence of enzymes of the ascorbate–glutathione cycle was studied in mitochondria purified from green and red pepper (Capsicum annuum L.) fruits. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were present in the isolated mitochondria of both fruit ripening stages. The activity of the reductive ascorbate–glutathione cycle enzymes (MDHAR, GR and DHAR) was higher in mitochondria isolated from green than from red fruits, while APX and the antioxidative enzyme superoxide dismutase (SOD; EC 1.15.1.1) were higher in the red fruits. The levels of ascorbate and L-galactono-γ-lactone dehydrogenase (GLDH; EC 1.3.2.3) activity were found to be similar in the mitochondria of both fruits. The higher APX and Mn-SOD specific activities in mitochondria from red fruits might play a role in avoiding the accumulation of any activated oxygen species generated in these mitochondria, and suggests an active role for these enzymes during ripening.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号