首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response
Institution:1. School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, PR China;2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China;3. State Key Lab of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200030, PR China
Abstract:The mechanisms involved in plant defense show several similar characteristics with the innate immune systems of vertebrates and invertebrates. In animals, nitric oxide (NO) cooperates with reactive oxygen intermediates (ROI) to kill tumor cells and is also required for macrophage killing of bacteria. Such cytotoxic events occur because unregulated levels of NO determine its diffusion-limited reaction with O2 generating peroxynitrite (ONOO), a mediator of cellular injury in many biological systems. In soybean suspension cells, unregulated NO production during the onset of a pathogen-induced hypersensitive response (HR) is not sufficient to activate the hypersensitive cell death, which is triggered only by fine tuning the NO/ROI ratio. Furthermore, that hypersensitive cell death is activated following interaction of NO with H2O2, rather than O2. Increasing O2 levels reduces NO-derived toxicity, and the addition of ONOO to soybean suspensions does not affect cell viability. Consistently with the fact that ONOO is not an essential mediator of NO/RO-induced cell death, during the HR superoxide dismutase (SOD) accelerates O2 dismutation to H2O2 and therefore minimizes the loss of NO by reaction with O2 and triggers hypersensitive cell death through the NO/H2O2 synergism. Consequently, the rates of production and dismutation of O2 generated during the oxidative burst play a crucial role in modulating NO signaling through the cell death pathway, which proceeds through mechanisms different from those commonly observed in animals.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号