首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In this issue: Proteomics 13/2008
Abstract:In this issue of Proteomics you will find the following highlighted articles: Mini pig kidney pie? A lot of antigens to chew on Miniature pigs have been of interest as potential organ xeno‐transplant donors for a number of years but mostly without success. A galactosyl transferase gene knock‐out heart lasted for 6 months, but then succumbed to vascular rejection, indicating previously unrecognized antigens. Kim, et al. applied current glycome analysis techniques to mini‐pig kidney surface antigens. They found an abundance of new ones–over 100 N‐glycans total, some sialylated, some neutral, some never reported before. The structures of many were determined and relatively quantitated. What was sauce for the kidney was not necessarily sauce for the heart. The information gathered and the questions raised will keep transplanters chewing for a long time. Y.‐G. Kim et al., Proteomics 2008, 8, 2596–2610. PACE‐ing along with the DUKX that are really hamsters Turning a marching band or moving it through a bottleneck requires different speeds at different points across the ranks. So does maximal production of biologically produced pharmaceuticals. Here Meleady, et al. use 2‐D DIGE technology to look at the required proteins and the levels of expression required for optimal production of human bone morphogenetic protein 2 (rhBMP‐2) in Chinese hamster ovary‐derived cell lines (CHO DUKX and engineered derivatives). Maturation of BMP‐2 requires the action of PACE (paired basic amino acid cleaving enzyme) and PACE levels are improved by co‐transfection with a soluble PACE gene. With high levels of PACE activity, yields of BMP‐2 improved 4‐fold. PACEsol enhances production of a variety of other proteins as well. Comparison of DUKX‐BMP‐2 cells expressing vs. not expressing PACEsol showed ~180 differentially expressed proteins, 60 identified, that were assigned to a number of functional categories. P. Meleady et al., Proteomics 2008, 8, 2611–2624. Ever deeper into cheesy secretome Kluyveromyces lactis, a budding yeast related to Saccharomyces cerevisiae, is of genetic and industrial interest. Its name comes from its ability to convert sweet milk to sour by fermentation of lactose to lactic acid, not quite the same as glucose to ethanol, but useful nonetheless. Industrially, it has been engineered to produce a vegetarian rennet for cheese‐making as well as other secreted protein products. Swaim, et al. compared the proteins in spent fermentation broth of the industrial expression strain K. lactis GG799 to the predicted secretion products based on genome sequence information and to predicted secretions from Candida albicans and S. cerevisiae. Using multidimensional LC‐MS/MS to analyze tryptic digests, they found 81 secreted products out of 178 predicted. Twenty‐six of those did not exhibit an N‐terminal secretion signal, suggesting that there are alternative pathways to the cell surface. An intracellular nano‐Swiss, perhaps? C. L. Swaim et al., Proteomics 2008, 8, 2714–2723.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号