A Toxin Fraction (FTX) from the Funnel-Web Spider Poison Inhibits Dihydropyridine-Insensitive Ca2+ Channels Coupled to Catecholamine Release in Bovine Adrenal Chromaffin Cells |
| |
Authors: | Carlos B. Duarte,Luis M. Rosario,Cristina M. Sena,Arsé lio P. Carvalho |
| |
Affiliation: | Center for Cell Biology and Center for Neurosciences of Coimbra, Department of Zoology, University of Coimbra, Coimbra, Portugal |
| |
Abstract: | Abstract: In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K+-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1–1 μ M ) and FTX (3:3), a synthetic FTX analogue (1 m M ), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by ∼80 and 70%, respectively, but both substances together abolished the K+-evoked catecholamine release, as measured by HPLC. The ω-conotoxin GVIA (0.5 μ M ) was without effect on K+-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and ω-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release. |
| |
Keywords: | Potassium depolarization Calcium channels Funnel-web spider toxin ω-Conotoxin GVIA Nitrendipine Catecholamine release Bovine adrenal chromaffin cells |
|
|