首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ESI-MS investigation of solvent effects on the chiral recognition capacity of tartar emetic towards neutral side-chain amino acids
Authors:Wijeratne Aruna B  Yang Samuel H  Gracia Jose  Armstrong Daniel W  Schug Kevin A
Institution:Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA.
Abstract:The effect of solvent systems on previously-reported ESI-MS based proton-assisted enantioselective molecular recognition phenomena of tartar emetic, L-antimony(III)-tartrate, was evaluated. This was achieved by carrying out a series of competitive binding experiments using chiral selectors, bis(sodium) D- and -L-antimony(III)-tartrates with chiral selectands, neutral side-chain amino acid enantiomeric isotopomers of alanine (Ala), valine (Val), leucine (Leu) and phenylalanine (Phe), in three different solvent systems, ACN/H(2)O (75/25 v/v), H(2)O (100%) and H(2)O/MeOH (25/75 v/v). Observations from these experiments suggest that the effect of solvent systems on previously reported proton-assisted chiral recognition capacity of D,L-antimony(III)-tartrates is small, but not negligible. It was observed that an ACN/H(2)O (75/25 v/v) solvent system facilitates and enhances the chiral discrimination capacity of protonated {D,L-Sb(2)-tar(2)]H]}(-) ionic species. Further, amino acid enantiomers showed a general trend of increasing selectivity order, Val ≤ Ala < Leu ≈ Phe towards the protonated {D,L-Sb(2)-tar(2)]H]}(-) ionic species which was independent of the solvent system employed. The lack of enantioselective binding for {D,L-Sb(2)-tar(2)]}(2-) ionic species was consistently recorded in respective mass spectra from all performed experiments, which suggests that ESI-friendly solvent systems have no effect and do not influence this phenomenon.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号