首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An Evaluation of Prediction Equations for the 6 Minute Walk Test in Healthy European Adults Aged 50-85 Years
Authors:Michael J Duncan  Jorge Mota  Joana Carvalho  Alan M Nevill
Institution:1Centre for Applied Biological and Exercise Science, Coventry University, Coventry, United Kingdom;2University of Porto, Faculty of Sports/Research Centre in Physical Activity, Health and Leisure—CIAFEL, Porto, Portugal;3Faculty of Health, Education and Wellbeing, University of Wolverhampton, Walsall, United Kingdom;Leeds Beckett University, UNITED KINGDOM
Abstract:ObjectiveThis study compared actual 6 minute walk test (6MWT) performance with predicted 6MWT using previously validated equations and then determined whether allometric modelling offers a sounder alternative to estimating 6MWT in adults aged 50–80 years.MethodsWe compared actual 6MWT performance against predicted 6MWT in 125 adults aged 50–85 years (62 male, 63 female). In a second sample of 246 adults aged 50–85 years (74 male, 172 female), a new prediction equation for 6MWT performance was developed using allometric modelling. This equation was then cross validated using the same sample that the other prediction equations were compared with.ResultsSignificant relationships were evident between 6MWT actual and 6MWT predicted using all of the commonly available prediction equations (all P<0.05 or better) with the exception of the Alameri et al prediction equation (P>0.05). A series of paired t-tests indicated significant differences between 6MWT actual and 6MWT predicted for all available prediction equations (all P<0.05 or better) with the exception of the Iwama et al equation (P = .540). The Iwama et al equation also had similar bias (79.8m) and a coefficient of variation of over 15%. Using sample 2, a log-linear model significantly predicted 6MWT from the log of body mass and height and age (P = 0.001, adjusted R2 = .526), predicting 52.6% of the variance in actual 6MWT. When this allometric equation was applied to the original sample, the relationship between 6MWT actual and 6MWT predicted was in excess of values reported for the other previously validated prediction equations (r = .706, P = 0.001). There was a significant difference between actual 6MWT and 6MWT predicted using this new equation (P = 0.001) but the bias, standard deviation of differences and coefficient of variation were all less than for the other equations.ConclusionsWhere actual assessment of the 6MWT is not possible, the allometrically derived equation presented in the current study, offers a viable alternative which has been cross validated and has the least SD of differences and smallest coefficient of variation compared to any of the previously validated equations for the 6MWT.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号