首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiology of deletion mutants in the anaerobic beta-myrcene degradation pathway in Castellaniella defragrans
Authors:Frauke Lüddeke  Aytac Dikfidan  Jens Harder
Abstract:ABSTRACT: BACKGROUND: Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic beta-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of beta-myrcene to (S)-(+)-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid.A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. RESULTS: Polar effects were absent in the in-frame deletion mutants C. defragrans Deltaldi and C. defragrans DeltageoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. CONCLUSIONS: In-frame deletion mutants of genes in the anaerobic beta-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the beta-myrcene degradation pathway. Growth on cyclic monoterpenes independent of the initial enzyme LDI suggests the presence of a second enzyme system activating unsaturated hydrocarbons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号