首页 | 本学科首页   官方微博 | 高级检索  
     


Electron-conformational model of ryanodine receptor lattice dynamics
Authors:Moskvin A S  Philipiev M P  Solovyova O E  Kohl P  Markhasin V S
Affiliation:

aUral State University, Ekaterinburg, Russia

bInstitute of Immunology and Physiology, Ekaterinburg, Russia

cUniversity Laboratory of Physiology, Oxford, UK

Abstract:We propose a simple, physically reasonable electron-conformational model for the ryanodine receptor (RyR) and, on that basis, present a theory to describe RyR lattice responses to L-type channel triggering as an induced non-equilibrium phase transition. Each RyR is modelled with a single open and a single closed (electronic) state only, described utilizing a s=12 pseudospin approach. In addition to the fast electronic degree of freedom, the RyR channel is characterized by a slow classical conformational coordinate, Q, which specifies the RyR channel calcium conductance and provides a multimodal continuum of possible RyR states. The cooperativity in the RyR lattice is assumed to be determined by inter-channel conformational coupling. Given a threshold sarcoplasmic reticulum (SR) calcium load, the RyR lattice fires due to a nucleation process with a step-by-step domino-like opening of a fraction of lattice channels, providing for a sufficient release to generate calcium sparks. The optimal mode of RyR lattice functioning during calcium-induced calcium release implies a fractional release with a robust termination due to a decrease in SR calcium load, accompanied by a respective change in effective conformational strain of the lattice. SR calcium overload is shown to result in excitation of RyR lattice auto-oscillations with spontaneous RyR channel opening and closure.
Keywords:Calcium-induced calcium release   Ryanodine receptor/channel   Electron-conformational coupling   Auto-oscillation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号