首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The characteristics of nutrient removal and inhibitory effect of Ulva clathrata on Vibrio anguillarum 65
Authors:Keguo Lu  Wei Lin  Jianguo Liu
Institution:(1) Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People’s Republic of China;(2) Graduate University of Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
Abstract:To investigate the ecological effect of macroalgae on de-eutrophication and depuration of mariculture seawater, the variation of dissolved inorganic nitrogen (DIN) and phosphate (DIP), the amount of Vibrio anguillarum, and total heterotrophic bacteria in Ulva clathrata culture, as well as on the algal surface, were investigated by artificially adding nutrients and V. anguillarum strain 65 from February to April 2006. The results indicated that U. clathrata not only had strong DIN and DIP removal capacities, but also showed a significant inhibitory effect on V. anguillarum, although not reducing the total heterotrophic bacteria. Vibrio anguillarum 65 dropped from 5∼8 × 107 cfu mL−1 to 10 cfu mL−1 (clone-forming units per mL) in 10 g L−1 of fresh U. clathrata culture within 2 days; i.e., almost all of the Vibrios were efficiently eradicated from the algal culture system. Our results also showed that the inhibitory effect of U. clathrata on V. anguillarum strain 65 was both DIN- and DIP-dependent. Addition of DIN and DIP could enhance the inhibitory effects of the algae on the Vibrio, but did not reduce the total heterotrophic bacteria. Further studies showed that the culture suspension in which U. clathrata was pre-cultured for 24 h also had an inhibitory effect on V. anguillarum strain 65. Some unknown chemical substances, either released from U. clathrata or produced by the alga associated microorganisms, inhibited the proliferation of V. anguillarum 65.
Keywords:Ulva clathrata            Chlorophyta  Inhibitory effect            Vibrio anguillarum 65  Bacteria  Mariculture
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号