首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium regulatory proteins and temperature acclimation of actomyosin ATPase from a eurythermal teleost (Carassius auratus L.)
Authors:Ian A. Johnston
Affiliation:(1) Department of Physiology, University of St. Andrews, St. Andrews, Fife, Scotland
Abstract:Summary Goldfish (Carassius auratus) were acclimated for 5 months at temperatures of either 2°C or 31°C. Natural actomyosin was prepared from white myotomal muscle and its Mg2+Ca2+ ATPase activity determined. Temperature acclimation results in adaptations in substrate turnover number and thermodynamic activation parameters of the ATPase. When assayed at 31°C the Mg2+Ca2+ ATPase of natural actomyosin was 4 times higher in 31°C than 2°C acclimated fish. Arrhenius plots of natural actomyosin ATPase from cold acclimated fish show a break in slope at 15–18°C. In contrast, the temperature dependence of warm acclimated actomyosin was linear. Activation enthalpy (DeltaHDagger) of the ATPase, calculated over the range 0–16°C, was approximately 8,000 cal/mole lower in 2°C than 32°C acclimated fish.In contrast, desensitised actomyosins from which the calcium regulatory proteins have been removed show a linear temperature dependence in the range 0–32°C and have similar properties in 2°C and 31°C acclimated fish. Cross-hybridisation of regulatory proteins (tropomyosin-troponins complex) from cold-acclimated fish to desensitised actomyosin from warm-acclimated fish alters the ATPase towards that of cold-acclimated natural actomyosin and vice versa. The results suggest that the regulatory proteins can influence the kinetics of the ATPase and, furthermore, that they are involved in the acclimation of the actomyosin to different cell temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号