Effects of divalent metal ions on the fluorescence and glucose-quenching of yeast hexokinase isozymes |
| |
Authors: | Isaac Feldman Thomas Fame |
| |
Affiliation: | Department of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA |
| |
Abstract: | Titrations of the quenching of the tryptophan fluorescence of yeast hexokinase isozymes P-I and P-II by Mg2+, Mn2+, Ca2+, Cd2+, and Zn2+ ions and by glucose in the presence of each of these ions (10mM) were performed at pH 5.5 and 6.5 at 20°C. At the higher pH there was a reversal of the type of glucose-binding cooperativity for P-II from negative to positive when either Mn2+ or Ca2+ was present in the buffered isozyme solution before the glucose titration, whereas Mg2+ caused the glucose binding to become noncooperative. Zn2+ and Cd2+ decreased the glucose quenching of P-II fluorescence drastically at pH 5.5, from a value of 15% in buffer to only 4%. Thus, only these two ions, of the five studied, cause the conformation change that results in quenching of the glucose-quenchable cleft tryptophan of P-II. Glucose binding to the P-I isozyme exhibited positive cooperativity in the presence of either Ca2+, Mg2+, or Mn2+, as well as in buffer alone, at both pH's. At the lower pH, Ca2+ enhanced the efficiency of glucose quenching of P-I fluorescence several-fold, while Mn2+ increased it only about 40% and Mg2+ not at all. Further, Ca2+ raised the degree of cooperativity (Hill coefficient) of glucose binding to P-I at this pH from the value of 1.42 in buffer and in the presence of Mg2+ and Mn2+ to 1.94, i.e., almost up to the highest possible value, 2, for dimeric hexokinase. However, at pH 6.5 the Ca2+ effect on the cooperativity was negligible, while Mg2+ and Mn2+ decreased the coefficient from 1.6 in buffer to about 1.4. The biological implications of these diverse metal ion effects are discussed. |
| |
Keywords: | Address reprint requests to Dr. Isaac Feldman Department of Radiation Biology and Biophysics University of Rochester School of Medicine and Dentistry 601 Elmwood Avenue Rochester NY 14642 |
本文献已被 ScienceDirect 等数据库收录! |
|