首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Delineating PAS‐HAMP interaction surfaces and signalling‐associated changes in the aerotaxis receptor Aer
Authors:Mark S Johnson  Barry L Taylor
Institution:Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
Abstract:The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer‐PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N‐terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase‐off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS‐HAMP surfaces overlapped with a cluster of PAS kinase‐on lesions and with cysteine substitutions that crosslinked the PAS β ‐scaffold to the HAMP AS‐2 helix. A refined Aer PAS‐HAMP interaction model is presented. Compared to the kinase‐off state, the kinase‐on state increased the accessibility of HAMP residues (apparently relaxing PAS‐HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static‐dynamic model in which oxidized Aer‐PAS interacts directly with HAMP AS‐2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase‐off output. When PAS‐FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase‐on output.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号