首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Basolateral K channel activated by carbachol in the epithelial cell line T84
Authors:J A Tabcharani  R A Harris  A Boucher  J W L Eng  J W Hanrahan
Institution:(1) Department of Physiology, McGill University, 3655 Drummond St., H3G 1Y6 Montreal, Quebec, Canada
Abstract:Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (I SC), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on I SC when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent I SC response to calcium ionophores. Carbachol (100 mgrm) transiently elevated intracellular free calcium (Ca2+] i ) by sim3-fold in confluent cells cultured on glass coverslips with a time course resembling the I sc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (–54 mV) with pipette solution containing 150 mm KCl (37°C). This rectification persisted when patches were bathed in symmetrical 150 mm KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na Gt Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mm barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba-insensitive, inwardly rectifying, Ca-activated). Like single KBIC channels, the carbachol-stimulated I SC was relatively insensitive to several blockers on the basolateral side and was unaffected by barium. These comparisons between the properties of the macroscopic current and single channels suggest that the KBIC channel mediates basolateral membrane K conductance in T84 cell monolayers during stimulation by cholinergic secretagogues.We thank Dr. Marcel Crest (Laboratoire de Neurobiologie, CNRS, Marseille) for providing a sample of kaliotoxin. This work was supported by the Canadian Cystic Fibrosis Foundation and the Respiratory Health Network of Centres of Excellence. J.W.H. is a Chercheur-Boursier of the Fonds de la recherche en santé du Québec.
Keywords:T84  Inward rectifier  KBIC  Cystic fibrosis  Chloride transport  Intestinal secretion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号