Molecular cloning and characterization of the gene encoding 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase from hairy roots of Rauvolfia verticillata |
| |
Authors: | Xiaozhong Lan |
| |
Affiliation: | 1. Tibet Agricultural and Animal Husbandry College, Nyingchi of Tibet, 860000, People’s Republic of China
|
| |
Abstract: | 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (MCT) catalyzes the third reaction in the plastidial non-mevalonate pathway, which provides the precursors for ajmalicine. A full-length cDNA encoding MCT (RvMCT) was identified from hairy roots of Rauvolfia verticillata. The full-length 1,499-bp cDNA of RvMCT had a 945-bp coding sequence that encoded a 314-amino-acid protein with an N-terminal chloroplast transit peptide of 67 amino acid residues. RvMCT exhibited homology with other plant MCTs at the levels of sequence and structure. The phylogenetic analysis revealed the plant MCTs could be divided into three separated clusters including gymnosperms, monocotyledons and dicotyledons. Gene expression of ajmalicine metabolism (DXR, MCT, MECS, HDS, HDR, STR and SGD) in hairy roots, roots, stems, old leaves, young leaves and barks was analyzed by quantitative PCR. All the seven genes had higher expression levels in hairy roots than in other plant organs. This suggested hairy roots of R. verticillata possessed more active alkaloid metabolism than other organs and it was the reason that hairy roots produced higher levels of ajmalicine. Furthermore, the expression of DXR, MECS, HDS, HDR, STR and SGD genes was not detected in stems (only MCT detected in stems), so it could be presumed that stem acted as a transporter tissue of ajmalicine. Finally, the colour complementation assay indicated that the function of RvMCT was the same as Arabidopsis MCT. Molecular cloning, characterization and functional identification of RvMCT will be helpful to understand more about the role of MCT involved in ajmalicine biosynthesis at the molecular level. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|