首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cysteine 351 is an essential nucleophile in catalysis by Porphyromonas gingivalis peptidylarginine deiminase
Authors:Sofía B Rodríguez  Barbara L Stitt
Institution:a Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States
b Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
Abstract:Peptidylarginine deiminase (PAD), which catalyzes the deimination of the guanidino group from peptidylarginine residues, belongs to a superfamily of guanidino group modifying enzymes that have been shown to produce an S-alkylthiouronium ion intermediate during catalysis. Thiol-directed reagents iodoacetamide and iodoacetate inactivate recombinant PAD, and substrate protects the enzyme from inactivation. Activity measurements together with peptide mapping by mass spectrometry of PAD modified in the absence and presence of substrate demonstrated that cysteine-351 is modified by iodoacetamide. The pKa value of the cysteine residue, 7.7 ± 0.2 as determined by iodoacetamide modification, agrees well with a critical pK value identified in pH rate studies. The role of cysteine-351 in catalysis was tested by site-directed mutagenesis in which the cysteine was replaced with serine to eliminate the proposed nucleophilic interaction. Binding studies carried out using fluorescence spectrometry established the structural integrity of the C351S PAD. However, the C351S PAD variant was catalytically inactive, exhibiting <0.01% wild-type activity. These results indicate that Cys 351 is a nucleophile that initiates the enzymatic reaction.
Keywords:Peptidylarginine deiminase  Porphyromonas gingivalis  Chemical modification  Site-directed mutagenesis  Cysteine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号