首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenetic niche conservatism in C4 grasses
Authors:Hui Liu  Erika J Edwards  Robert P Freckleton  Colin P Osborne
Institution:1. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
2. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
Abstract:Photosynthetic pathway is used widely to discriminate plant functional types in studies of global change. However, independent evolutionary lineages of C4 grasses with different variants of C4 photosynthesis show different biogeographical relationships with mean annual precipitation, suggesting phylogenetic niche conservatism (PNC). To investigate how phylogeny and photosynthetic type differentiate C4 grasses, we compiled a dataset of morphological and habitat information of 185 genera belonging to two monophyletic subfamilies, Chloridoideae and Panicoideae, which together account for 90 % of the world’s C4 grass species. We evaluated evolutionary variance and covariance of morphological and habitat traits. Strong phylogenetic signals were found in both morphological and habitat traits, arising mainly from the divergence of the two subfamilies. Genera in Chloridoideae had significantly smaller culm heights, leaf widths, 1,000-seed weights and stomata; they also appeared more in dry, open or saline habitats than those of Panicoideae. Controlling for phylogenetic structure showed significant covariation among morphological traits, supporting the hypothesis of phylogenetically independent scaling effects. However, associations between morphological and habitat traits showed limited phylogenetic covariance. Subfamily was a better explanation than photosynthetic type for the variance in most morphological traits. Morphology, habitat water availability, shading, and productivity are therefore all involved in the PNC of C4 grass lineages. This study emphasized the importance of phylogenetic history in the ecology and biogeography of C4 grasses, suggesting that divergent lineages need to be considered to fully understand the impacts of global change on plant distributions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号