首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nucleotide substitution and recombination at orthologous loci in Staphylococcus aureus
Authors:Hughes Austin L  Friedman Robert
Institution:Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 700 Sumter St., Columbia SC 29208, USA. austin@biol.sc.edu
Abstract:The pattern of nucleotide substitution was examined at 2,129 orthologous loci among five genomes of Staphylococcus aureus, which included two sister pairs of closely related genomes (MW2/MSSA476 and Mu50/N315) and the more distantly related MRSA252. A total of 108 loci were unusual in lacking any synonymous differences among the five genomes; most of these were short genes encoding proteins highly conserved at the amino acid sequence level (including many ribosomal proteins) or unknown predicted genes. In contrast, 45 genes were identified that showed anomalously high divergence at synonymous sites. The latter genes were evidently introduced by homologous recombination from distantly related genomes, and in many cases, the pattern of nucleotide substitution made it possible to reconstruct the most probable recombination event involved. These recombination events introduced genes encoding proteins that differed in amino acid sequence and thus potentially in function. Several of the proteins are known or likely to be involved in pathogenesis (e.g., staphylocoagulase, exotoxin, Ser-Asp fibrinogen-binding bone sialoprotein-binding protein, fibrinogen and keratin-10 binding surface-anchored protein, fibrinogen-binding protein ClfA, and enterotoxin P). Therefore, the results support the hypothesis that exchange of homologous genes among S. aureus genomes can play a role in the evolution of pathogenesis in this species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号